Impact of sedimentary basins on Green’s functions for static slip inversion

Author:

Langer Leah1,Beller Stephen2ORCID,Hirakawa Evan1,Tromp Jeroen23ORCID

Affiliation:

1. U.S. Geological Survey , Moffett Field, CA 94035, USA

2. Department of Geosciences, Princeton University , Princeton, NJ 08544, USA

3. Program in Applied & Computational Mathematics, Princeton University , Princeton, NJ 08544-1000, USA

Abstract

SUMMARY Earthquakes often occur in regions with complex material structure, such as sedimentary basins or mantle wedges. However, the majority of co-seismic modelling studies assume a simplified, often homogeneous elastic structure in order to expedite the process of model construction and speed up calculations. These co-seismic forward models are used to produce Green’s functions for finite-fault inversions, so any assumptions made in the forward model may introduce bias into estimated slip models. In this study, we use a synthetic model of a sedimentary basin to investigate the impact of 3-D elastic structure on forward models of co-seismic surface deformation. We find that 3-D elastic structure can cause changes in the shape of surface deformation patterns. The magnitude of this effect appears to be primarily controlled by the magnitude of contrast in material properties, rather than the sharpness of contrast, the fault orientation, the location of the fault, or the slip orientation. As examples of real-world cases, we explore the impact of 3-D elastic structure with a model of the Taipei basin in Taiwan and a simulated earthquake on the Sanchaio fault, and with a 3-D geologic model of the San Francisco Bay Area and a slip model of the 1984 Morgan Hill earthquake on the Calaveras fault. Once again, we find that the presence of the basin leads to differences in the shape and amplitude of the surface deformation pattern, but we observe that the primary differences are in the magnitude of surface deformation and can be accounted for with a layered elastic structure. Our results imply that the use of homogeneous Green’s functions may lead to bias in inferred slip models in regions with sedimentary basins, so, at a minimum, a layered velocity structure should be used.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3