Geomagnetic field behaviour during the early Cretaceous Normal Superchron from palaeomagnetic analysis of the Ramon Volcanics, Israel

Author:

Dembo Neta1ORCID,Kraus Erez1,Seliverstov Irina1,Weissman Gal1,Granot Roi1

Affiliation:

1. Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel

Abstract

SUMMARY Unravelling the long-term behaviour of the geomagnetic field is crucial for understanding the dynamics of the deep Earth. Yet, obtaining an accurate measure of geomagnetic palaeosecular variations (PSV) is difficult, partly because of tectonically induced rotations that overprint the original palaeomagnetic signal. We present a detailed palaeomagnetic investigation based on 99 sampling sites collected from the 119 to 112.6 Ma Ramon Volcanics exposed near the dormant Ramon Fault, southern Israel. These basaltic rocks were emplaced at equatorial palaeolatitudes during the beginning of the Cretaceous Normal Superchron (CNS; 123.4–83.6 Ma), during which there were no polarity reversals. Structurally corrected remanence directions consistently vary across the investigated area, whereby the sites found near a sharp bend of the Ramon Fault are clockwise rotated, whereas the other sites show no obvious rotational pattern. Elasto-plastic modelling suggests that the rotations were induced by up to 1.5 km of dextral horizontal slip accommodated by the fault, consistent with previous geological and geophysical estimations. Considering the remanence directions obtained from sites that were not influenced by the fault, we calculated an SB value of $13.3_{ - 1.3}^{ + 1.9 \circ }$ (95 percent confidence, 46 sites), which corresponds to previous SB estimations from pre- and early-CNS volcanic bodies emplaced at low palaeolatitudes (λ < 20°). This observation suggests that the emergence of the superchron was not accompanied by a change in the behaviour of the geomagnetic PSV. Finally, our results, together with previous palaeo-equatorial observations, show that the middle part of the superchron had lower angular dispersion (i.e. lower SB) compared to the scatter that prevailed during the beginning of the superchron. This observation suggests that the geomagnetic field transitioned into a more axial dipole dominance state towards the middle part of the superchron. Altogether, our analysis indicates that the superchron cannot be treated as a period characterized by a steady-state field behaviour.

Funder

ISF

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference78 articles.

1. Polarity reversals from paleomagnetic observations and numerical dynamo simulations;Amit;Space. Sci. Rev.,2010

2. Late Cenozoic right-lateral strike-slip faulting in southern Tibet;Armijo;J. geophys. Res.,1989

3. Observations and models of the long-term evolution of Earth's magnetic field;Aubert;Space. Sci. Rev.,2010

4. The structural and landscape evolution of the western Ramon structure;Avni;Israel J. Earth. Sci.,1993

5. Igneous intrusions in Makhtesh Ramon, Israel: mechanics of emplacement and structural implication;Baer,1989

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3