Affiliation:
1. School of Geosciences, University of Edinburgh , James Hutton Road, Edinburgh EH93FE, UK
Abstract
SUMMARY
Many natural hazards exhibit inverse power-law scaling of frequency and event size, or an exponential scaling of event magnitude (m) on a logarithmic scale, for example the Gutenberg–Richter law for earthquakes, with probability density function p(m) ∼ 10−bm. We derive an analytic expression for the bias that arises in the maximum likelihood estimate of b as a function of the dynamic range r. The theory predicts the observed evolution of the modal value of mean magnitude in multiple random samples of synthetic catalogues at different r, including the bias to high b at low r and the observed trend to an asymptotic limit with no bias. The situation is more complicated for a single sample in real catalogues due to their heterogeneity, magnitude uncertainty and the true b-value being unknown. The results explain why the likelihood of large events and the associated hazard is often underestimated in small catalogues with low dynamic range, for example in some studies of volcanic and induced seismicity.
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献