Highly heterogeneous upper-mantle structure in Fennoscandia from finite-frequency P-body-wave tomography

Author:

Bulut N1ORCID,Thybo H123ORCID,Maupin V4ORCID

Affiliation:

1. Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak 34469, Istanbul, Turkey

2. State Key Laboratory GPMR, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

3. Sinoprobe Laboratory, Chinese Academy of Geological Sciences, Beijing 100037, China

4. Center for Earth Evolution and Dynamics, University of Oslo, Blindern, 0316 Oslo, Norway

Abstract

SUMMARY We present a P-wave velocity model of the upper mantle, obtained from finite-frequency body-wave tomography, to analyse the relationship between deep and surface structures in Fennoscandia, one of the most studied cratons on the Earth. The large array aperture of 2000 km × 800 km allows us to image the velocity structure to 800 km depth at very high resolution. The velocity structure provides background for understanding the mechanisms responsible for the enigmatic and strongly debated high topography in the Scandinavian mountain range far from any plate boundary. Our model shows exceptionally strong velocity anomalies with changes by up to 6 per cent on a 200 km scale. We propose that a strong negative velocity anomaly down to 200 km depth along all of Norway provides isostatic support to the enigmatic topography, as we observe a linear correlation between hypsometry and uppermost mantle velocity anomalies to 150 km depth in central Fennoscandia. The model reveals a low-velocity anomaly below the mountains underlain by positive velocity anomalies, which we explain by preserved original Svecofennian and Archaean mantle below the Caledonian/Sveconorwegian deformed parts of Fennoscandia. Strong positive velocity anomalies to around 200 km depth around the southern Bothnian Bay and the Baltic Sea may be associated with pristine lithosphere of the present central and southern Fennoscandian craton that has been protected from modification since its formation. However, the Archaean domain in the north and the marginal parts of the Svecofennian domains appear to have experienced strong modification of the upper mantle. A pronounced north-dipping positive velocity anomaly in the southern Baltic Sea extends below Moho. It coincides in location and dip with a similar north-dipping structure in the crust and uppermost mantle to 80 km depth observed from high-resolution, controlled source seismic data. We interpret this feature as the image of a Palaeoproterozoic boundary that has been preserved for 1.8 Gy in the lithosphere.

Funder

DEEP

UiO

University of Oslo

National Taiwan University

Independent Research Fund Denmark

National Science Foundation of China

MOST

GPMR State Key Laboratory

Research Council of Norway

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3