Topography effect on ambient noise tomography: a case study for the Longmen Shan area, eastern Tibetan Plateau

Author:

Jin Ruizhi12,He Xiaohui123,Fang Hongjian12,Xie Jun4,Liu Ying3,Zhang Peizhen12

Affiliation:

1. Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-Sen University , Guangzhou 510275 , China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai 519082 , China

3. Mengcheng National Geophysical Observatory, University of Science and Technology of China , Mengcheng 233500 , China

4. State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences , Wuhan 430077 , China

Abstract

SUMMARY Ambient noise tomography (ANT) is a widely used method to obtain shear wave velocity structure in the crust and upper mantle. Usually, the topography is assumed to have negligible effect on the resulting models. This, however, might not be proper in regions with large topographic variation, such as plateau edges, submarine slopes and volcanic islands. In this study, we use synthetics from waveform-based numerical simulation to quantify the topography effect on ANT in the Longmen Shan area, eastern Tibetan Plateau margin. Three kinds of models are used in forward simulation to obtain theoretical waveforms, including Case1: the layered model, Case2: the layered model with topographic variation and Case3: the flattened model of Case2. The final inversion results show that the bias of ANT is negligible in the blocks with relatively flat topography, such as the interior regions of the Tibetan Plateau and the Sichuan Basin. However, for the Longmen Shan boundary zone with significant topographic variation (∼4 km), the shear wave velocity image has an obvious negative bias that can reach up to −4 per cent. The maximum depth of bias is ∼5 km, which is mirrored with the maximum topographic elevation difference of the region, and the average bias disappears as the depth decreases to the surface (0 km) or increases to three times of the maximum influence depth (∼15 km). The horizontal distribution of the tomographic bias is almost linearly related to the topographic elevation difference with a slope of −1.04 and a correlation coefficient of 0.90 at maximum influence depth. According to this first-order correction formula and the decreasing trend of average bias with depth, the topography effect on ANT can be suppressed to a certain extent.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3