Crustal structure and intraplate seismicity in Nordland, Northern Norway: insight from seismic tomography

Author:

Shiddiqi H A1ORCID,Ottemöller L1,Rondenay S1,Halpaap F1,Gradmann S2,Michálek J1

Affiliation:

1. Department of Earth Science, University of Bergen, 5007 Bergen, Norway

2. Geological Survey of Norway, Trondheim N-7491, Norway

Abstract

SUMMARY The Nordland region, Northern Norway, situated in an intraplate continental setting, has the highest seismicity rate in mainland Norway. However, the exact cause of seismicity in this region is still debated. Better understanding of factors that influence the seismicity in Nordland can help increase knowledge of intraplate seismicity in general. Here, we address this problem with the aid of a new high-resolution 3-D VP and VP/VS ratio images of the crust in Nordland using seismic traveltime tomography. These images show the existence of a localized, 10–15 km Moho step that runs parallel to the coast. The north–south extent of this step coincides with the region that exhibits the highest rates of seismicity. Focal mechanisms of selected earthquakes computed in this study are dominated by normal and oblique-normal, indicating a coast-perpendicular extension. The coast-perpendicular extensional stress regime deviates from the regional compression imposed by the ridge push from the North Atlantic. This deviation is thought to stem from the additional interference with local flexural stress caused by sediment redistribution and glacial isostatic adjustment, and possibly exacerbated by gravitational potential energy stress associated with the Moho step. The deformation due to the extensional regime is localized on pre-existing faults and fractures along the coastline. The tomography result shows that two distinct seismic swarms occurred in the coastal area with low VP and variable VP/VS ratio anomalies, pointing towards fractured crust and possibly the presence of fluids. The existence of fluids here can change the differential stress and promote seismic rupture.

Funder

Research Council of Norway

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3