Affiliation:
1. Rosenstiel School of Marine and Atmospheric Science, University of Miami , Miami, FL 33149, USA
2. School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, GA 30332, USA
Abstract
SUMMARY
We present our estimations and comparisons of the in situ Vp/Vs ratios and seismicity characteristics for the Parkfield segment of the San Andreas fault in northern California and the San Jacinto Fault Zone and its adjacent regions in southern California. Our results show that the high-resolution in situ Vp/Vs ratios are much more complex than the tomographic Vp/Vs models. They show similar variation patterns to those in the tomographic Vp models, indicating that Vp/Vs ratios are controlled by material properties but are also strongly influenced by fluid contents. In Parkfield, we observe velocity contrasts between the creeping and locked sections. In southern California, we see small-scale anomalous Vp/Vs variation patterns, especially where fault segments intersect, terminate and change orientations. In addition, our investigation confirms that the seismicity in Parkfield is more repeatable than in southern California. However, the earthquakes in the southernmost portion of the San Andreas fault, the trifurcation area of the San Jacinto Fault Zone and the Imperial fault are as much likely falling into clusters as those in Parkfield. The correlation of highly similar events with anomalous in situ Vp/Vs ratios supports the important role of fluids in the occurrence of repeating earthquakes. The high-resolution Vp/Vs ratio estimation method and the corresponding results are helpful for revealing roles of fluids in driving earthquake, fault interaction and stress distribution in fault zones.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献