A fractional vertical derivative technique for regional-residual separation

Author:

Florio G1ORCID,Fedi M1,Cella F2

Affiliation:

1. Department of Earth, Environmental and Resources Sciences, University of Naples ‘Federico II’, Complesso di Monte S. Angelo, Via Cintia, Edificio L , 80126 Naples, Italy

2. School of Science and Technology – Division of Geology, University of Camerino , Via Gentile III da Varano, 27, 62032 Camerino, Italy

Abstract

SUMMARY The separation of the effects of deep-seated sources of potential fields from those of shallower ones is a frequent requirement when interpreting magnetic or gravity fields. A common procedure is estimating the regional, long wavelength, component of the field by analysing the data over an area larger than that of the local feature of interest. The local components are found by subtracting the estimated regional from the observed data. These approaches may have difficulties in their application, as the dataset over large areas may not be available and other local anomalies, in the enlarged area, may prevent a reliable estimate of the regional field. We present an alternative and simple approach to the regional-residual separation problem not requiring the analysis over large areas and aiming at estimating the local, rather than the regional, component. Our method exploits the natural enhancement of short wavelengths obtainable by computing vertical derivatives of potential fields. An equivalent layer source is computed from the vertical derivative and is used to estimate the local field. The optimal differentiation order can be determined by inspecting the obtained results. This parameter may assume even fractional values, so that the method results a very versatile tool. The application to a complex synthetic case and two real data examples demonstrates the utility of this approach. In summary, our method has some peculiar characteristics making it an interesting alternative to currently used approaches to regional-residual separation: (i) it is a local method, so it can work well even when processing datasets relative to areas of limited extension; (ii) unlike most current methods, estimating a smooth regional component, our method directly produces an estimate of the local field and (iii) it is highly versatile, as the key parameter, that is the fractional differentiation order, can be finely adjusted up to obtain an optimal local field.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference30 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3