Gastrointestinal Microbiota Disruption and Risk of Colonization With Carbapenem-resistant Pseudomonas aeruginosa in Intensive Care Unit Patients

Author:

Pettigrew Melinda M1,Gent Janneane F2,Kong Yong34,Halpin Alison Laufer5,Pineles Lisa6,Harris Anthony D6,Johnson J Kristie67

Affiliation:

1. Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut

2. Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut

3. Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut

4. Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, Connecticut

5. Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia

6. Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore

7. Department of Pathology, University of Maryland School of Medicine, Baltimore

Abstract

Abstract Background Carbapenem-resistant Pseudomonas aeruginosa (CRPA) colonizes the gastrointestinal tract of intensive care unit (ICU) patients, and CRPA colonization puts patients at increased risk of CRPA infection. Prior studies have not examined relationships between the microbiota, medications, and CRPA colonization acquisition. Methods Data and perirectal swabs were obtained from a cohort of ICU patients at the University of Maryland Medical Center. Patients (N = 109) were classified into 3 groups by CRPA colonization-acquisition status and antimicrobial exposure. We conducted 16S ribosomal RNA gene sequencing of an ICU admission swab and ≥1 additional swab and evaluated associations between patient characteristics, medications, the gastrointestinal microbiota, and CRPA colonization acquisition. Results ICU patients had low levels of diversity and high relative abundances of pathobionts. Piperacillin-tazobactam was prescribed more frequently to patients with CRPA colonization acquisition than those without. Piperacillin-tazobactam was associated with low abundance of potentially protective taxa (eg, Lactobacillus and Clostridiales) and increased risk of Enterococcus domination (odds ratio [OR], 5.50; 95% confidence interval [CI], 2.03–14.92). Opioids were associated with dysbiosis in patients who did not receive antibiotics; potentially protective Blautia and Lactobacillus were higher in patients who did not receive opioids. Several correlated taxa, identified at ICU admission, were associated with lower risk of CRPA colonization acquisition (OR, 0.58; 95% CI, .38–.87). Conclusions Antibiotics differed in their impact on the microbiota, with piperacillin-tazobactam being particularly damaging. Certain bacterial taxa (eg, Clostridiales) were negatively associated with CRPA colonization acquisition. These taxa may be markers of risk for CRPA colonization acquisition and/or serve a protective role.

Funder

National Institutes of Health

Centers for Disease Control and Prevention

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3