Prasad’s Conjecture About Dualizing Involutions

Author:

Arote Prashant1,Mishra Manish1

Affiliation:

1. Department of Mathematics, Indian Institute of Science Education and Research Pune , Dr Homi Bhabha Road, Pune 411008, India

Abstract

Abstract Let $G$ be a connected reductive group defined over a finite field ${\mathbb{F}}_{q}$ with corresponding Frobenius $F$. Let $\iota _{G}$ denote the duality involution defined by D. Prasad under the hypothesis $2\textrm{H}^{1}(F,Z(G))=0$, where $Z(G)$ denotes the center of $G$. We show that for each irreducible character $\rho $ of $G^{F}$, the involution $\iota _{G}$ takes $\rho $ to its dual $\rho ^{\vee }$ if and only if for a suitable Jordan decomposition of characters, an associated unipotent character $u_{\rho }$ has Frobenius eigenvalues $\pm $ 1. As a corollary, we obtain that if $G$ has no exceptional factors and satisfies $2\textrm{H}^{1}(F,Z(G))=0$, then the duality involution $\iota _{G}$ takes $\rho $ to its dual $\rho ^{\vee }$ for each irreducible character $\rho $ of $G^{F}$. Our results resolve a finite group counterpart of a conjecture of D. Prasad.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference19 articles.

1. Representations of reductive groups over finite fields;Deligne;Ann. Math. (2),1976

2. The characters of the group of rational points of a reductive group with nonconnected centre;Lehrer;J. Reine Angew. Math.,1992

3. On Lusztig’s parametrization of characters of finite groups of lie type;Digne;Astérisque,1990

4. Representations of Finite Groups of Lie Type

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3