Linking of Lagrangian Tori and Embedding Obstructions in Symplectic 4-Manifolds

Author:

Ĉoté Laurent12,Dimitroglou Rizell Georgios3

Affiliation:

1. Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA

2. Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, Princeton, NJ 08540, USA

3. Department of Mathematics, Uppsala University, Box 480, SE-751 06, Uppsala, Sweden

Abstract

Abstract We classify weakly exact, rational Lagrangian tori in $T^* \mathbb{T}^2- 0_{\mathbb{T}^2}$ up to Hamiltonian isotopy. This result is related to the classification theory of closed $1$-forms on $\mathbb{T}^n$ and also has applications to symplectic topology. As a 1st corollary, we strengthen a result due independently to Eliashberg–Polterovich and to Giroux describing Lagrangian tori in $T^* \mathbb{T}^2-0_{\mathbb{T}^2}$, which are homologous to the zero section. As a 2nd corollary, we exhibit pairs of disjoint totally real tori $K_1, K_2 \subset T^*\mathbb{T}^2$, each of which is isotopic through totally real tori to the zero section, but such that the union $K_1 \cup K_2$ is not even smoothly isotopic to a Lagrangian. In the 2nd part of the paper, we study linking of Lagrangian tori in $({\mathbb{R}}^4, \omega )$ and in rational symplectic $4$-manifolds. We prove that the linking properties of such tori are determined by purely algebro-topological data, which can often be deduced from enumerative disk counts in the monotone case. We also use this result to describe certain Lagrangian embedding obstructions.

Funder

Stanford University

National Science Foundation

Knut and Alice Wallenberg Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference34 articles.

1. Nearby Lagrangians with vanishing Maslov class are homotopy equivalent;Abouzaid;Invent. Math.,2012

2. A sheaf-theoretic model for $\textrm{S}L\left (2,\mathbb{C}\right )$ Floer homology;Abouzaid;J. Eur. Math. Soc. (JEMS)

3. Symplectic Rigidity: Lagrangian Submanifolds;Audin,1994

4. Infinitely many monotone Lagrangian tori in $\mathbb{R}^6$;Auroux;Invent. Math.,2016

5. Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique (French);Banyaga;Comment. Math. Helv.,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3