Affiliation:
1. Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin
Abstract
Abstract
Let $X_1$ and $X_2$ be deformation equivalent projective hyperkähler manifolds. We prove that the André motive of $X_1$ is abelian if and only if the André motive of $X_2$ is abelian. Applying this to manifolds of $\mbox {K3}^{[n]}$, generalized Kummer and OG6 deformation types, we deduce that their André motives are abelian. As a consequence, we prove that all Hodge classes in arbitrary degree on such manifolds are absolute. We discuss applications to the Mumford–Tate conjecture, showing in particular that it holds for even degree cohomology of such manifolds.
Publisher
Oxford University Press (OUP)
Reference37 articles.
1. Rational curves on hyperkähler manifolds;Amerik;Int. Math. Res. Notices,2015
2. Pour une théorie inconditionnelle des motifs;André;Publ. Math. I.H.E.S.,1996
3. On the Shafarevich and Tate conjectures for hyperkähler varieties;André;Math. Ann.,1996
4. Variétés Kählériennes dont la première classe de Chern est nulle;Beauville;J. Diff. Geom.,1983
5. Motivated cycles under specialization;Cadoret,2013
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献