Metrics on a Surface with Bounded Total Curvature

Author:

Li Yuxiang1,Sun Jianxin2,Tang Hongyan1

Affiliation:

1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China

2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R. China

Abstract

Abstract Let $g=e^{2u}g_{euc}$ be a conformal metric defined on the unit disk of ${{\mathbb{C}}}$. We give an estimate of $\|\nabla u\|_{L^{2,\infty }(D_{\frac{1}{2}})}$ when $\|K(g)\|_{L^1}$ is small and $\frac{\mu (B_r^g(z),g)}{\pi r^2}<\Lambda $ for any $r$ and $z\in D_{\frac{3}{4}}$. Then we use this estimate to study the Gromov–Hausdorff convergence of a conformal metric sequence with bounded $\|K\|_{L^1}$ and give some applications.

Funder

National Nature Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference22 articles.

1. Uniform estimates and blow-up behavior for solutions of $-\varDelta u=V(x){e}^u$ in two dimensions;Brezis;Comm. Partial Differential Equations,1991

2. Approximating compact inner metric spaces by surfaces;Cassorla;Indiana Univ. Math. J.,1992

3. On the structure of spaces with Ricci curvature bounded below. II;Cheeger;J. Differential Geom.,1999

4. Compactness of conformal metrics with positive Gaussian curvature in $\mathbb{R}^2$;Cheng;Ann. Scuola Norm. Sup. Pisa Cl. Sci.,1998

5. On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in $\mathbb{R}^2$;Cheng;Math. Ann.,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability of convex disks;Calculus of Variations and Partial Differential Equations;2023-10-07

2. Classification of Willmore Surfaces with Vanishing Gaussian Curvature;The Journal of Geometric Analysis;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3