The Farrell–Jones Conjecture for Hyperbolic-by-Cyclic Groups

Author:

Bestvina Mladen1,Fujiwara Koji2,Wigglesworth Derrick3

Affiliation:

1. Department of Mathematics, University of Utah , 155 S. 1400 E. Salt Lake City, UT 84112, USA

2. Department of Mathematics, Kyoto University , Kyoto 606-8502, Japan

3. Department of Mathematical Sciences, University of Arkansas , 309 SCEN, Fayetteville, AR 72703, USA

Abstract

Abstract We prove the Farrell–Jones conjecture (FJC) for mapping tori of automorphisms of virtually torsion-free hyperbolic groups. The proof uses recently developed geometric methods for establishing the FJC by Bartels–Lück–Reich, as well as the structure theory of mapping tori by Dahmani–Krishna.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference37 articles.

1. On Proofs of the Farrell–Jones Conjecture;Bartels,2016

2. Coarse flow spaces for relatively hyperbolic groups;Bartels;Compositio Math.,2017

3. The Farrell–Jones conjecture for mapping class groups;Bartels;Invent. Math.,2019

4. The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups;Bartels;J. Amer. Math. Soc.,2014

5. Farrell–Jones conjecture for free-by-cyclic groups;Bestvina

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Profinite properties of algebraically clean graphs of free groups;Journal of Pure and Applied Algebra;2025-01

2. A stability range for topological 4-manifolds;Transactions of the American Mathematical Society;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3