Morita Equivalence of Formal Poisson Structures

Author:

Bursztyn Henrique1,Ortiz Inocencio2,Waldmann Stefan3

Affiliation:

1. IMPA - Instituto Nacional de Matematica Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil

2. NIDTEC-FPUNA, P.O.Box: 2111 SL, CEP, San Lorenzo 2160, Paraguay

3. Department of Mathematics, Julius Maximilian University of Würzburg, Emil-Fischer-StraSSe 31, 97074 Würzburg, Germany

Abstract

Abstract We extend the notion of Morita equivalence of Poisson manifolds to the setting of formal Poisson structures, that is, formal power series of bivector fields $\pi =\pi _0 + \lambda \pi _1 +\cdots $ satisfying the Poisson integrability condition $[\pi ,\pi ]=0$. Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure ($\pi _0=0$) in terms of $B$-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products [ 5], our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference39 articles.

1. Deformation theory and quantization. I. Deformations of symplectic structures;Bayen;Ann. Physics,1978

2. Deformation theory and quantization. II. Physical applications;Bayen;Ann. Physics,1978

3. Semiclassical geometry of quantum line bundles and Morita equivalence of star products;Bursztyn;Internat. Math. Res. Notices,2002

4. A brief introduction to Dirac manifolds

5. Morita equivalence and characteristic classes of star products;Bursztyn;J. Reine Angew. Math.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shifted symplectic higher Lie groupoids and classifying spaces;Advances in Mathematics;2023-01

2. Symplectic embeddings, homotopy algebras and almost Poisson gauge symmetry;Journal of Physics A: Mathematical and Theoretical;2021-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3