Elliptic Multizetas and the Elliptic Double Shuffle Relations

Author:

Lochak Pierre1,Matthes Nils2,Schneps Leila1

Affiliation:

1. CNRS and Institut Mathématique de Jussieu, Université P. et M. Curie, 4 place Jussieu, Cedex 05, F-75252 Paris, France

2. Fachbereich Mathematik (AZ), Universität Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany; Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX26GG, United Kingdom

Abstract

Abstract We define an elliptic generating series whose coefficients, the elliptic multizetas, are related to the elliptic analogues of multiple zeta values introduced by Enriquez as the coefficients of his elliptic associator; both sets of coefficients lie in $\mathcal{O}({{\mathfrak{H}}})$, the ring of functions on the Poincaré upper half-plane ${{\mathfrak{H}}}$. The elliptic multizetas generate a ${{\mathbb{Q}}}$-algebra ${{\mathcal{E}}}$, which is an elliptic analogue of the algebra of multiple zeta values. Working modulo $2\pi i$, we show that the algebra ${{\mathcal{E}}}$ decomposes into a geometric and an arithmetic part and study the precise relationship between the elliptic generating series and the elliptic associator defined by Enriquez. We show that the elliptic multizetas satisfy a double shuffle type family of algebraic relations similar to the double shuffle relations satisfied by multiple zeta values. We prove that these elliptic double shuffle relations give all algebraic relations among elliptic multizetas if (1) the classical double shuffle relations give all algebraic relations among multiple zeta values and (2) the elliptic double shuffle Lie algebra has a certain natural semi-direct product structure analogous to that established by Enriquez for the elliptic Grothendieck–Teichmüller Lie algebra.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference40 articles.

1. On the derivation representation of the fundamental Lie algebra of mixed elliptic motives;Baumard;Ann. Math. Qué.,2017

2. Elliptic multiple zeta values and one-loop superstring amplitudes;Broedel;J. High Energy Phys.,2015

3. Relations between elliptic multiple zeta values and a special derivation algebra;Broedel;J. Phys. A,2016

4. Mixed Tate motives over $\mathbb{Z}$;Brown;Ann. of Math. (2),2012

5. Depth-graded motivic multiple zeta values;Brown,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Fay relations satisfied by the elliptic associator;Israel Journal of Mathematics;2023-11

2. Elliptic double shuffle, Grothendieck–Teichmüller and mould theory;Annales mathématiques du Québec;2020-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3