Affiliation:
1. Stanford University 450 Serra Mall Stanford , CA 94305, USA
Abstract
Abstract
Let $L$ be an $n$-component link ($n>1$) with pairwise nonzero linking numbers in a rational homology $3$-sphere $Y$. Assume the complement $X:=Y\setminus \nu (L)$ has nondegenerate Thurston norm. We study when a Thurston norm-minimizing surface $S$ properly embedded in $X$ remains norm-minimizing after Dehn filling all boundary components of $X$ according to $\partial S$ and capping off $\partial S$ by disks. In particular, for $n=2$ the capped-off surface is norm-minimizing when $[S]$ lies outside of a finite set of rays in $H_2(X,\partial X;{\mathbb {R}})$, answering a conjecture of Gabai. When $Y$ is an integer homology sphere this gives an upper bound on the number of surgeries on $L$ which may yield $S^1\times S^2$. The main techniques come from Gabai’s proof of the Property R conjecture and related work.
Publisher
Oxford University Press (OUP)
Reference15 articles.
1. Dehn filling and the Thurston norm;Baker;J. Diff. Geom.,2019
2. Sur les courbes définies par les équations différentielles à la surface du tore;Denjoy;J. Math. Pure. Appl,1932
3. Detecting fibred links in;Gabai;Comment. Math. Helv,1986
4. Foliations and genera of links;Gabai;Topology,1984