Inhomogeneous Diophantine Approximation on M0-Sets with Restricted Denominators

Author:

Pollington Andrew D1,Velani Sanju1,Zafeiropoulos Agamemnon2,Zorin Evgeniy3

Affiliation:

1. National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia 22314, USA

2. Department of Analysis and Computational Number Theory, Graz University of Technology, TU 8010 Graz, Austria

3. Department of Mathematics, University of York, Heslington, York YO10 5DD, UK

Abstract

Abstract Let $F \subseteq [0,1]$ be a set that supports a probability measure $\mu $ with the property that $ |\widehat{\mu }(t)| \ll (\log |t|)^{-A}$ for some constant $ A> 0 $. Let $\mathcal{A}= (q_n)_{n\in{\mathbb{N}}} $ be a sequence of natural numbers. If $\mathcal{A}$ is lacunary and $A>2$, we establish a quantitative inhomogeneous Khintchine-type theorem in which (1) the points of interest are restricted to $F$ and (2) the denominators of the “shifted” rationals are restricted to $\mathcal{A}$. The theorem can be viewed as a natural strengthening of the fact that the sequence $(q_nx \textrm{mod} 1)_{n\in{\mathbb{N}}} $ is uniformly distributed for $\mu $ almost all $x \in F$. Beyond lacunary, our main theorem implies the analogous quantitative result for sequences $\mathcal{A}$ for which the prime divisors are restricted to a finite set of $k$ primes and $A> 2k$. Loosely speaking, for such sequences, our result can be viewed as a quantitative refinement of the fundamental theorem of Davenport, Erdös, and LeVeque (1963) in the theory of uniform distribution.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference25 articles.

1. Logarithmic forms and group varieties;Baker;J. Reine Angew. Math.,1993

2. Measure theoretic laws for limsup sets;Beresnevich;Mem. Amer. Math. Soc.,2006

3. Metric Diophantine Approximation: Aspects of Recent Work;Beresnevich,2016

4. Zur Konstruktion von Salem–Mengen;Bluhm,1996

5. On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets;Bluhm;Ark. Mat.,1998

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On odd-normal numbers;Indian Journal of Pure and Applied Mathematics;2024-07-23

2. Dispersion and Littlewood's conjecture;Advances in Mathematics;2024-06

3. On the Nature of Distribution of the Given Sequence;Pure Mathematics;2024

4. FULLY INHOMOGENEOUS MULTIPLICATIVE DIOPHANTINE APPROXIMATION OF BADLY APPROXIMABLE NUMBERS;Mathematika;2021-05-13

5. Equidistribution Results for Self-Similar Measures;International Mathematics Research Notices;2021-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3