Multimatroids and Rational Curves with Cyclic Action

Author:

Clader Emily1,Damiolini Chiara2,Eur Christopher3,Huang Daoji4,Li Shiyue5

Affiliation:

1. Department of Mathematics , San Francisco State University, CA 94132, USA

2. Department of Mathematics , University of Texas at Austin, TX 78712, USA

3. Department of Mathematics , Harvard University, MA 02138, USA

4. Department of Mathematics , University of Minnesota, MN 55455, USA

5. School of Mathematics , Institute for Advanced Study, NJ 08540, USA

Abstract

Abstract We study the connection between multimatroids and moduli spaces of rational curves with cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise in topological graph theory. The perspective of moduli of curves provides a tropical framework for studying multimatroids, generalizing the previous connection between type-$A$ permutohedral varieties (Losev–Manin moduli spaces) and matroids, and the connection between type-$B$ permutohedral varieties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the space of ${\mathbb {R}}$-multimatroids, a generalization of multimatroids, and we introduce the independence polytopal complex of a multimatroid, whose volume is identified with an intersection number on the moduli space. As an application, we give a combinatorial formula for a natural class of intersection numbers on the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.

Publisher

Oxford University Press (OUP)

Reference36 articles.

1. Hodge theory for combinatorial geometries;Adiprasito;Ann. of Math. (2),2018

2. Matroid polytopes and their volumes;Ardila;Discrete Comput. Geom.,2010

3. Simplicial generation of chow rings of matroids;Backman;J. Eur. Math. Soc.,2023

4. Matroids over partial hyperstructures;Baker;Adv. Math.,2019

5. The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces;Batyrev;Tohoku Math. J. (2),2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3