Subspace Arrangements and Cherednik Algebras

Author:

Griffeth Stephen1

Affiliation:

1. Instituto de Matemáticas, Universidad de Talca, Camino Lircay S/N, Talca, Chile 3460000

Abstract

Abstract The purpose of this article is to study the relationship between numerical invariants of certain subspace arrangements coming from reflection groups and numerical invariants arising in the representation theory of Cherednik algebras. For instance, we observe that knowledge of the equivariant graded Betti numbers (in the sense of commutative algebra) of any irreducible representation in category ${\mathscr{O}}$ is equivalent to knowledge of the Kazhdan–Lusztig character of the irreducible object (we use this observation in joint work with Fishel–Manosalva). We then explore the extent to which Cherednik algebra techniques may be applied to ideals of linear subspace arrangements: we determine when the radical of the polynomial representation of the Cherednik algebra is a radical ideal and, for the cyclotomic rational Cherednik algebra, determine the socle of the polynomial representation and characterize when it is a radical ideal. The subspace arrangements that arise include various generalizations of the $k$-equals arrangement. In the case of the radical, we apply our results with Juteau together with an idea of Etingof–Gorsky–Losev to observe that the quotient is Cohen–Macaulay for positive choices of parameters. In the case of the socle (in cyclotomic type), we give an explicit vector space basis in terms of certain specializations of nonsymmetric Jack polynomials, which in particular determines its minimal generators and Hilbert series and answers a question posed by Feigin and Shramov.

Funder

FONDECYT

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference29 articles.

1. Jack polynomials as fractional quantum Hall states and the Betti numbers of the $\left (k+1\right )$-equals ideal;Berkesch-Zamaere;Comm. Math. Phys.,2014

2. Parabolic induction and restriction functors for rational Cherednik algebras;Bezrukavnikov;Selecta Math. (N.S.),2009

3. Characteristic-free bases and BGG resolutions of unitary simple modules for quiver Hecke and Cherednik algebras;Bowman

4. Dirac cohomology for symplectic reflection algebras;Ciubotaru;Selecta Math. (N.S.),2016

5. Differential-difference operators associated to reflection groups;Dunkl;Trans. Amer. Math. Soc.,1989

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3