Derived Traces of Soergel Categories

Author:

Gorsky Eugene12,Hogancamp Matthew3,Wedrich Paul456

Affiliation:

1. Department of Mathematics, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA

2. Faculty of Mathematics and Mechanics, Moscow State University, GSP-1, Moscow 119991, Russia

3. Department of Mathematics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA

4. Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

5. Mathematical Institute, AUniversity of Bonn, Endenicher Allee 60, 53115 Bonn, Germany

6. Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, CA 94720, USA

Abstract

Abstract We study two kinds of categorical traces of (monoidal) dg categories, with particular interest in categories of Soergel bimodules. First, we explicitly compute the usual Hochschild homology, or derived vertical trace, of the category of Soergel bimodules in arbitrary types. Secondly, we introduce the notion of derived horizontal trace of a monoidal dg category and compute the derived horizontal trace of Soergel bimodules in type $A$. As an application we obtain a derived annular Khovanov–Rozansky link invariant with an action of full twist insertion, and thus a categorification of the HOMFLY-PT skein module of the solid torus.

Funder

Russian Science Foundation

NSF

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference68 articles.

1. A factorization homology primer;Ayala,2019

2. A DG guide to Voevodsky’s motives;Beilinson;Geom. Funct. Anal,2008

3. Trace decategorification of categorified quantum sl$_2$;Beliakova;Math. Ann,2017

4. Quantum link homology via trace functor I;Beliakova;Invent. Math,2019

5. Integral transforms and Drinfeld centers in derived algebraic geometry;Ben-Zvi;J. Amer. Math. Soc,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The trace of the affine Hecke category;Proceedings of the London Mathematical Society;2023-04-30

2. Invariants of 4–manifolds from Khovanov–Rozansky link homology;Geometry & Topology;2022-12-31

3. Algebra and geometry of link homology: Lecture notes from the IHES 2021 Summer School;Bulletin of the London Mathematical Society;2022-12-24

4. Evaluations of annular Khovanov–Rozansky homology;Mathematische Zeitschrift;2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3