Harish-Chandra Modules over Hopf Galois Orders

Author:

Hartwig Jonas T1

Affiliation:

1. Department of Mathematics, Iowa State University , Ames, IA 50011, USA

Abstract

Abstract The theory of Galois orders was introduced by Futorny and Ovsienko [9]. We introduce the notion of $\mathcal {H}$-Galois $\Lambda $-orders. These are certain noncommutative orders $F$ in a smash product of the fraction field of a noetherian integral domain $\Lambda $ by a Hopf algebra ${\mathcal {H}}$ (or, more generally, by a coideal subalgebra of a Hopf algebra). They are generalizations of Webster’s [25] principal flag orders. Examples include Cherednik algebras, as well as examples from Hopf Galois theory. We also define spherical Galois orders, which are the corresponding generalizations of principal Galois orders introduced by the author [12]. The main results are (1) for every maximal ideal $\mathfrak {m}$ of $\Lambda $ of finite codimension, there exists a simple Harish-Chandra $F$-module in the fiber of $\mathfrak {m}$; (2) for every character of $\Lambda $, we construct a canonical simple Harish-Chandra module as a subquotient of the module of local distributions; (3) if a certain stabilizer coalgebra is finite-dimensional, then the corresponding fiber of simple Harish-Chandra modules is finite; and (4) centralizers of symmetrizing idempotents are spherical Galois orders and every spherical Galois order appears that way.

Funder

Simons Collaboration Grant for Mathematicians

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3