Cohomology of Lie Groupoid Modules and the Generalized van Est Map

Author:

Lackman Joshua1

Affiliation:

1. Department of Mathematics, University of Toronto, Toronto, Ontario, 40 St. George Street, M5S 2E4, Canada

Abstract

Abstract The van Est map is a map from Lie groupoid cohomology (with respect to a sheaf taking values in a representation) to Lie algebroid cohomology. We generalize the van Est map to allow for more general sheaves, namely to sheaves of sections taking values in a (smooth or holomorphic) $G$-module, where $G$-modules are structures, which differentiate to representations. Many geometric structures involving Lie groupoids and stacks are classified by the cohomology of sheaves taking values in $G$-modules and not in representations, including $S^1$-groupoid extensions and equivariant gerbes. Examples of such sheaves are $\mathcal{O}^*$ and $\mathcal{O}^*(*D)\,,$ where the latter is the sheaf of invertible meromorphic functions with poles along a divisor $D\,.$ We show that there is an infinitesimal description of $G$-modules and a corresponding Lie algebroid cohomology. We then define a generalized van Est map relating these Lie groupoid and Lie algebroid cohomologies and study its kernel and image. Applications include the integration of several infinitesimal geometric structures, including Lie algebroid extensions, Lie algebroid actions on gerbes, and certain Lie $\infty $-algebroids.

Funder

University of Toronto’s Faculty of Arts and Science Top Doctoral

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Higher-dimensional algebra. V: 2-groups;Baez;Theor. Appl. Categ.,2004

2. Differentiable stacks and Gerbes;Behrend;J. Symplectic Geom.,2011

3. Differentiable cohomology of gauge groups;Brylinski,2000

4. Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes;Crainic;Comment. Math. Helv.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3