Polynomial Representations of the Witt Lie Algebra

Author:

Sam Steven V1,Snowden Andrew2,Tosteson Philip34

Affiliation:

1. Department of Mathematics , University of California, San Diego, CA 92093, USA

2. Department of Mathematics , University of Michigan, Ann Arbor, MI 48109, USA

3. Department of Mathematics , University of Chicago, Chicago, IL 60637, USA

4. Department of Mathematics , University of North Carolina, Chapel Hill, NC 27599, USA

Abstract

Abstract The Witt algebra  ${\mathfrak{W}}_{n}$ is the Lie algebra of all derivations of the $n$-variable polynomial ring $\textbf{V}_{n}=\textbf{C}[x_{1}, \ldots , x_{n}]$ (or of algebraic vector fields on $\textbf{A}^{n}$). A representation of ${\mathfrak{W}}_{n}$ is polynomial if it arises as a subquotient of a sum of tensor powers of $\textbf{V}_{n}$. Our main theorems assert that finitely generated polynomial representations of ${\mathfrak{W}}_{n}$ are noetherian and have rational Hilbert series. A key intermediate result states polynomial representations of the infinite Witt algebra are equivalent to representations of $\textbf{Fin}^{\textrm{op}}$, where $\textbf{Fin}$ is the category of finite sets. We also show that polynomial representations of ${\mathfrak{W}}_{n}$ are equivalent to polynomial representations of the endomorphism monoid of $\textbf{A}^{n}$. These equivalences are a special case of an operadic version of Schur–Weyl duality, which we establish.

Funder

National Science Foundation

Sloan Fellowship

Publisher

Oxford University Press (OUP)

Reference24 articles.

1. Algebraic Theories

2. Bounded-rank tensors are defined in bounded degree;Draisma;Duke Math. J.,2014

3. Algebraic structures on cohomology of configuration spaces of manifolds with flows;Ellenberg

4. On finite dimensionality of homology of subalgebras of vector fields;Feigin

5. Modules over Operads and Functors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3