The Positive Tropical Grassmannian, the Hypersimplex, and the m = 2 Amplituhedron

Author:

Łukowski Tomasz1,Parisi Matteo23,Williams Lauren K4

Affiliation:

1. Department of Physics, Astronomy and Mathematics, University of Hertfordshire , College Lane, AL10 9AB Hatfield, UK

2. Center of Mathematical Sciences and Applications, Harvard University , 20 Garden St., Cambridge, MA 02138, USA

3. School of Natural Sciences, Institute for Advanced Study , 1 Einstein Dr., Princeton, NJ 08540, USA

4. Department of Mathematics, Harvard University , 1 Oxford Street, Cambridge, MA 02138, USA

Abstract

Abstract The positive Grassmannian $Gr^{\geq 0}_{k,n}$ is a cell complex consisting of all points in the real Grassmannian whose Plücker coordinates are non-negative. In this paper we consider the image of the positive Grassmannian and its positroid cells under two different maps: the moment map$\mu $ onto the hypersimplex [ 31] and the amplituhedron map$\tilde{Z}$ onto the amplituhedron [ 6]. For either map, we define a positroid dissection to be a collection of images of positroid cells that are disjoint and cover a dense subset of the image. Positroid dissections of the hypersimplex are of interest because they include many matroid subdivisions; meanwhile, positroid dissections of the amplituhedron can be used to calculate the amplituhedron’s ‘volume’, which in turn computes scattering amplitudes in $\mathcal{N}=4$ super Yang-Mills. We define a map we call T-duality from cells of $Gr^{\geq 0}_{k+1,n}$ to cells of $Gr^{\geq 0}_{k,n}$ and conjecture that it induces a bijection from positroid dissections of the hypersimplex $\Delta _{k+1,n}$ to positroid dissections of the amplituhedron $\mathcal{A}_{n,k,2}$; we prove this conjecture for the (infinite) class of BCFW dissections. We note that T-duality is particularly striking because the hypersimplex is an $(n-1)$-dimensional polytope while the amplituhedron $\mathcal{A}_{n,k,2}$ is a $2k$-dimensional non-polytopal subset of the Grassmannian $Gr_{k,k+2}$. Moreover, we prove that the positive tropical Grassmannian is the secondary fan for the regular positroid subdivisions of the hypersimplex, and prove that a matroid polytope is a positroid polytope if and only if all 2D faces are positroid polytopes. Finally, toward the goal of generalizing T-duality for higher $m$, we define the momentum amplituhedron for any even $m$.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference69 articles.

1. Grassmannian Geometry of Scattering Amplitudes

2. Positive Geometries and Canonical Forms;Arkani-Hamed;JHEP,2017

3. A Duality For The S Matrix;Arkani-Hamed;JHEP,2010

4. Non-perturbative geometries for planar $\mathcal{N}=4$ SYM amplitudes;Arkani-Hamed;J. High Energy Phys.,2021

5. Positive configuration space;Arkani-Hamed;Comm. Math. Phys.,2021

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Loops of loops expansion in the amplituhedron;Journal of High Energy Physics;2024-07-03

2. Polyhedral and tropical geometry of flag positroids;Algebra & Number Theory;2024-06-13

3. Coulomb Branch Amplitudes from a Deformed Amplituhedron Geometry;Physical Review Letters;2024-05-21

4. Oriented matroids from triangulations of products of simplices;Selecta Mathematica;2024-04-28

5. Prescriptive unitarity from positive geometries;Journal of High Energy Physics;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3