Sharp Decay Rate for the Damped Wave Equation With Convex-Shaped Damping

Author:

Sun Chenmin1

Affiliation:

1. Laboratoire de Mathématiques AGM, CY Cergy-Paris Université , UMR 8088 du CNRS, 2 av. Adolphe Chauvin 95302 Cergy-Pontoise Cedex, France

Abstract

Abstract We revisit the damped wave equation on two-dimensional torus where the damped region does not satisfy the geometric control condition. It was shown in [1] that, for sufficiently regular damping, the damped wave equation is stale at a rate sufficiently close to $t^{-1}$. We show that if the damping vanishes like a Hölder function $|x|^{\beta }$, and in addition, the boundary of the damped region is locally strictly convex with positive curvature, the wave is stable at rate $t^{-1+\frac {2}{2\beta +7}}$, which is better than the known optimal decay rate $t^{-1+\frac {1}{\beta +3}}$ for strip-shaped dampings of the same Hölder regularity. Moreover, we show by example that the decay rate is optimal. This illustrates the fact that the sharp energy decay rate depends not only on the order of vanishing of the damping but also on the shape of the damped region. The main ingredient of the proof is the averaging method (normal form reduction) developed by Hitrik and Sjöstrand ([20], [35]).

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference38 articles.

1. Sharp polynomial decay rates for the damped wave equation on the torus;Anantharaman;Anal. PDE,2014

2. Semiclassical measures for the Schrödinger equation on the torus;Anantharaman;J. Eur. Math. Soc.,2014

3. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary;Bardos;SIAM J. Control Optim.,1992

4. Non-uniform stability for bounded semi-groups on Banach spaces;Batty;J. Evol. Equ.,2008

5. Optimal polynomial decay of functions and operator semigroups;Borichev;Math. Ann.,2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control Estimates for 0th-Order Pseudodifferential Operators;International Mathematics Research Notices;2023-11-06

2. Nonuniform stability of damped contraction semigroups;Analysis & PDE;2023-08-12

3. Sharp Resolvent Estimate for the Damped-Wave Baouendi–Grushin Operator and Applications;Communications in Mathematical Physics;2023-01-07

4. Revisit the Damped Wave Equation;Trends in Mathematics;2023

5. Sharp Exponential Decay Rates for Anisotropically Damped Waves;Annales Henri Poincaré;2022-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3