A Leray Model for the Orlik–Solomon Algebra

Author:

Bibby Christin1,Denham Graham2,Feichtner Eva Maria3

Affiliation:

1. Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

2. Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada

3. ALTA, Department of Mathematics and Computer Science, University of Bremen, 28359 Bremen, Germany

Abstract

Abstract We construct a combinatorial generalization of the Leray models for hyperplane arrangement complements. Given a matroid and some combinatorial blow-up data, we give a presentation for a bigraded (commutative) differential graded algebra. If the matroid is realizable over $\mathbb {C}$, this is the familiar Morgan model for a hyperplane arrangement complement, embedded in a blowup of projective space. In general, we obtain a cdga that interpolates between the Chow ring of a matroid and the Orlik–Solomon algebra. Our construction can also be expressed in terms of sheaves on combinatorial blowups of geometric lattices. As a key technical device, we construct a monomial basis via a Gröbner basis for the ideal of relations. Combining these ingredients, we show that our algebra is quasi-isomorphic to the classical Orlik–Solomon algebra of the matroid.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference30 articles.

1. Hodge theory for combinatorial geometries;Adiprasito;Ann. of Math. (2),2018

2. Lagrangian geometry of matroids;Ardila,2020

3. Whitney numbers of geometric lattices;Bacławski;Adv. Math.,1975

4. Cohomology of abelian arrangements;Bibby;Proc. Amer. Math. Soc.,2016

5. On the homology of geometric lattices;Björner;Algebra Universalis,1982

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hodge Theory for Polymatroids;International Mathematics Research Notices;2023-03-03

2. A semi-small decomposition of the Chow ring of a matroid;Advances in Mathematics;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3