Equivariant Cohomology and Conditional Oriented Matroids

Author:

Dorpalen-Barry Galen1,Proudfoot Nicholas2,Wang Jidong3

Affiliation:

1. Faculty of Mathematics, Ruhr-Universität Bochum , D-44801 Bochum, Germany

2. Department of Mathematics, University of Oregon , Eugene, OR 97403, USA

3. Department of Mathematics, University of Texas , Austin, TX 78712, USA

Abstract

Abstract We give a cohomological interpretation of the Heaviside filtration on the Varchenko–Gelfand ring of a pair $({\mathcal{A}},{\mathcal{K}})$, where ${\mathcal{A}}$ is a real hyperplane arrangement and ${\mathcal{K}}$ is a convex open subset of the ambient vector space. This builds on work of the first author, who studied the filtration from a purely algebraic perspective, as well as work of Moseley, who gave a cohomological interpretation in the special case where ${\mathcal{K}}$ is the ambient vector space. We also define the Gelfand–Rybnikov ring of a conditional oriented matroid, which simultaneously generalizes the Gelfand–Rybnikov ring of an oriented matroid and the aforementioned Varchenko–Gelfand ring of a pair. We give purely combinatorial presentations of the ring, its associated graded, and its Rees algebra.

Publisher

Oxford University Press (OUP)

Reference14 articles.

1. The moment map and equivariant cohomology;Atiyah;Topology,1984

2. COMs: complexes of oriented matroids;Bandelt;J. Combin. Theory Ser. A,2018

3. Oriented matroids;Björner,1999

4. Seminar on transformation groups;Borel,1960

5. Introduction to compact transformation groups;Bredon,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3