Restriction of Laplace–Beltrami Eigenfunctions to Arbitrary Sets on Manifolds

Author:

Eswarathasan Suresh1,Pramanik Malabika2

Affiliation:

1. Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Road, Halifax, NS B3H 4R2, Canada

2. Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada

Abstract

Abstract Given a compact Riemannian manifold $(M, g)$ without boundary, we estimate the Lebesgue norm of Laplace–Beltrami eigenfunctions when restricted to a wide variety of subsets $\Gamma $ of $M$. The sets $\Gamma $ that we consider are Borel measurable, Lebesguenull but otherwise arbitrary with positive Hausdorff dimension. Our estimates are based on Frostman-type ball growth conditions for measures supported on $\Gamma $. For large Lebesgue exponents $p$, these estimates provide a natural generalization of $L^p$ bounds for eigenfunctions restricted to submanifolds, previously obtained in [ 8, 18, 19, 32]. Under an additional measure-theoretic assumption on $\Gamma $, the estimates are shown to be sharp in this range. As evidence of the genericity of the sharp estimates, we provide a large family of random, Cantor-type sets that are not submanifolds, where the above-mentioned sharp bounds hold almost surely.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference40 articles.

1. Entropy and the localization of eigenfunctions;Anantharaman;Ann. Math. (2),2008

2. Wiley Series in Probability and Mathematical Statistics;Billingsley,1991

3. Logarithmic improvements in ${L}^p$-norms for eigenfunctions at the critical exponent in the presence of nonpositive curvature;Blair,2019

4. Geodesic restriction and ${L}^p$-estimates for eigenfunctions on Riemannian surfaces;Bourgain,2009

5. Fourier dimension and spectral gaps for hyperbolic surfaces;Bourgain;Geom. Funct. Anal.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3