Folding of Hitchin Systems and Crepant Resolutions

Author:

Beck Florian1,Donagi Ron2,Wendland Katrin3

Affiliation:

1. Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany

2. Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA

3. Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Ernst-Zermelo-Strasse 1, 79104 Freiburg im Breisgau, Germany

Abstract

AbstractFolding of ADE-Dynkin diagrams according to graph automorphisms yields irreducible Dynkin diagrams of $\textrm{ABCDEFG}$-types. This folding procedure allows to trace back the properties of the corresponding simple Lie algebras or groups to those of $\textrm{ADE}$-type. In this article, we implement the techniques of folding by graph automorphisms for Hitchin integrable systems. We show that the fixed point loci of these automorphisms are isomorphic as algebraic integrable systems to the Hitchin systems of the folded groups away from singular fibers. The latter Hitchin systems are isomorphic to the intermediate Jacobian fibrations of Calabi–Yau orbifold stacks constructed by the 1st author. We construct simultaneous crepant resolutions of the associated singular quasi-projective Calabi–Yau three-folds and compare the resulting intermediate Jacobian fibrations to the corresponding Hitchin systems.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation

Simons HMS Collaboration

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference43 articles.

1. Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold;Anchouche;Amer. J. Math.,2001

2. Spectral curves and the generalised theta divisor;Beauville;J. Reine Angew. Math.,1989

3. Hitchin and Calabi–Yau integrable systems;Beck,2016

4. Hitchin and Calabi-Yau integrable systems via variations of Hodge structures;Beck,2020

5. Calabi–Yau orbifolds over Hitchin bases;Beck;J. Geom. Phys.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-Polarized Meromorphic Hitchin and Calabi–Yau Integrable Systems;International Mathematics Research Notices;2022-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3