The Fundamental Fiber Sequence in Étale Homotopy Theory

Author:

Haine Peter J1,Holzschuh Tim2,Wolf Sebastian3

Affiliation:

1. Department of Mathematics, University of California , Berkeley, CA 94720, USA

2. Fakultät für Mathematik und Informatik , Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany

3. Fakultät für Mathematik, Universität Regensburg , 93040 Regensburg, Germany

Abstract

Abstract Let $ k $ be a field with separable closure $ \bar {k} \supset k $, and let $ X $ be a qcqs $ k $-scheme. We use the theory of profinite Galois categories developed by Barwick–Glasman–Haine to provide a quick conceptual proof that the sequences $ \Pi _{<\infty }^{\'{e}\textrm {t}}(X_{\bar {k}}) \to \Pi _{<\infty }^{\'{e}\textrm {t}}(X) \to \text {BGal}(\bar {k}/k) $ and $ \widehat {\Pi }_{\infty }^{\'{e}\textrm {t}}(X_{\bar {k}}) \to \widehat {\Pi }_{\infty }^{\'{e}\textrm {t}}(X) \to \text {BGal}(\bar {k}/k) $ of protruncated and profinite étale homotopy types are fiber sequences. This gives a common conceptual reason for the following two phenomena: first, the higher étale homotopy groups of $ X $ and the geometric fiber $ X_{\bar {k}} $ are isomorphic, and second, if $ X_{\bar {k}} $ is connected, then the sequence of profinite étale fundamental groups $ 1 \to \hat {\pi }^{\'{e}\textrm {t}}_1(X_{\bar {k}}) \to \hat {\pi }^{\'{e}\textrm {t}}_1(X) \to \text {Gal}(\bar {k}/k) \to 1 $ is exact. It also proves the analogous results for the groupe fondamental élargi of SGA3.

Funder

UC President’s Postdoctoral Fellowship

NSF Mathematical Sciences Postdoctoral Research Fellowship

Simons Foundation

Deutsche Forschungsgemeinschaft

SFB 1085 “Higher Invariants” in Regensburg

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference37 articles.

1. Schémas en groupes II: groupes de type multiplicatif, et structure des schémas en groupes généraux;Artin

2. Théorie des topos et cohomologie étale des schémas. Tome 2;Artin,1963–64

3. Etale Homotopy

4. A projective model structure on pro-simplicial sheaves, and the relative étale homotopy type;Barnea;Adv. Math.,2016

5. Exodromy;Barwick,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3