Shifted Poisson Structures on Differentiable Stacks

Author:

Bonechi Francesco1,Ciccoli Nicola2,Laurent-Gengoux Camille3,Xu Ping4

Affiliation:

1. INFN Sezione si Firenze, Via Sansone 1, 50019 Sesto Fiorentino (Fi), Italy

2. Dipartimento di Mathematica,e Informatica, Università di Perugia 06123, Perugia, Italy

3. Institut Elie Cartan de Lorraine (IECL), UMR 7502, Université de Lorraine, 57000 Metz, France

4. Department of Mathematics, Pennsylvania State University, University Park, Pa 16802, USA

Abstract

Abstract The purpose of this paper is to investigate $(+1)$-shifted Poisson structures in the context of differential geometry. The relevant notion is that of $(+1)$-shifted Poisson structures on differentiable stacks. More precisely, we develop the notion of the Morita equivalence of quasi-Poisson groupoids. Thus, isomorphism classes of $(+1)$-shifted Poisson stacks correspond to Morita equivalence classes of quasi-Poisson groupoids. In the process, we carry out the following program, which is of independent interest: (1) We introduce a ${\mathbb{Z}}$-graded Lie 2-algebra of polyvector fields on a given Lie groupoid and prove that its homotopy equivalence class is invariant under the Morita equivalence of Lie groupoids, and thus they can be considered to be polyvector fields on the corresponding differentiable stack ${\mathfrak{X}}$. It turns out that $(+1)$-shifted Poisson structures on ${\mathfrak{X}}$ correspond exactly to elements of the Maurer–Cartan moduli set of the corresponding dgla. (2) We introduce the notion of the tangent complex $T_{\mathfrak{X}}$ and the cotangent complex $L_{\mathfrak{X}}$ of a differentiable stack ${\mathfrak{X}}$ in terms of any Lie groupoid $\Gamma{\rightrightarrows } M$ representing ${\mathfrak{X}}$. They correspond to a homotopy class of 2-term homotopy $\Gamma$-modules $A[1]\rightarrow TM$ and $T^{\vee } M\rightarrow A^{\vee }[-1]$, respectively. Relying on the tools of theory of VB-groupoids including homotopy and Morita equivalence of VB-groupoids, we prove that a $(+1)$-shifted Poisson structure on a differentiable stack ${\mathfrak{X}}$ defines a morphism ${L_{\mathfrak{X}}}[1]\to{T_{\mathfrak{X}}}$.

Funder

Gruppo Nazionale Strutture Algebriche Geometriche e loro Applicazioni dell'Istituto Nazionale di Alta Matematica

Ministero dell'Istruzione, dell'Università e della Ricerca Scientifica

Progetto di Ricerca di Base

Geometria della Quantizzazione, Università di Perugia

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference44 articles.

1. Butterflies I. morphisms of 2-group stacks;Aldrovandi;Adv. Math.,2009

2. Lie group valued moment maps;Alekseev;J. Differential Geom.,1998

3. Manin pairs and moment maps;Alekseev;J. Differential Geom.,2000

4. Quasi-Poisson manifolds;Alekseev;Canad. J. Math.,2002

5. Representations up to homotopy and Bott’s spectral sequence for lie groupoids;Arias Abad;Adv. Math.,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiplicative forms on Poisson groupoids;Science China Mathematics;2024-08-08

2. The Weak Graded Lie 2-Algebra of Multiplicative Forms on a Quasi-Poisson Groupoid;Communications in Mathematical Physics;2024-06-23

3. Stacks;Reference Module in Materials Science and Materials Engineering;2024

4. Lie Groupoids;Reference Module in Materials Science and Materials Engineering;2024

5. Shifted symplectic higher Lie groupoids and classifying spaces;Advances in Mathematics;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3