Quantitative Singularity Theory for Random Polynomials

Author:

Breiding Paul1,Keneshlou Hanieh2,Lerario Antonio3

Affiliation:

1. Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

2. Max-Planck Institute for Mathematics in Sciences, Inselstr. 22, 04103 Leipzig, Germany

3. Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy

Abstract

Abstract Motivated by Hilbert’s 16th problem we discuss the probabilities of topological features of a system of random homogeneous polynomials. The distribution for the polynomials is the Kostlan distribution. The topological features we consider are type-$W$ singular loci. This is a term that we introduce and that is defined by a list of equalities and inequalities on the derivatives of the polynomials. In technical terms a type-$W$ singular locus is the set of points where the jet of the Kostlan polynomials belongs to a semialgebraic subset $W$ of the jet space, which we require to be invariant under orthogonal change of variables. For instance, the zero set of polynomial functions or the set of critical points fall under this definition. We will show that, with overwhelming probability, the type-$W$ singular locus of a Kostlan polynomial is ambient isotopic to that of a polynomial of lower degree. As a crucial result, this implies that complicated topological configurations are rare. Our results extend earlier results from Diatta and Lerario who considered the special case of the zero set of a single polynomial. Furthermore, for a given polynomial function $p$ we provide a deterministic bound for the radius of the ball in the space of differentiable functions with center $p$, in which the $W$-singularity structure is constant.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference44 articles.

1. Graduate Texts in Mathematics;Axler,2001

2. Grundlehren der Mathematischen Wissenschaften;Bürgisser,2013

3. Ergebnisse der Mathematik und ihrer Grenzgebiete (3);Bochnak,1998

4. Singularities and plane maps;Callahan;Amer. Math. Monthly,1974

5. The number of eigenvalues of a tensor;Cartwright;Linear Algebra Appl.,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Probabilistic Method in Real Singularity Theory;Arnold Mathematical Journal;2023-11-28

2. Maximal and typical topology of real polynomial singularities;Annales de l'Institut Fourier;2023-07-03

3. REAL CIRCLES TANGENT TO 3 CONICS;MATEMATICHE;2023

4. Exponential rarefaction of maximal real algebraic hypersurfaces;Journal of the European Mathematical Society;2022-12-22

5. On the Topology of Random Real Complete Intersections;The Journal of Geometric Analysis;2022-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3