Property RD and Hypercontractivity for Orthogonal Free Quantum Groups

Author:

Brannan Michael1,Vergnioux Roland2,Youn Sang-Gyun3

Affiliation:

1. Department of Mathematics, Mailstop 3368, Texas A & M University, College Station, TX 77843-3368, USA

2. Normandie Univ, UNICAEN,CNRS, LMNO, 14000 Caen, France

3. Department of Mathematics Education, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea

Abstract

Abstract We prove that the twisted property RD introduced in [ 2] fails to hold for all non-Kac type, non-amenable orthogonal free quantum groups. In the Kac case we revisit property RD, proving an analogue of the $L_p-L_2$ non-commutative Khintchine inequality for free groups from [ 29]. As an application, we give new and improved hypercontractivity and ultracontractivity estimates for the generalized heat semigroups on free orthogonal quantum groups, both in the Kac and non-Kac cases.

Funder

Natural Science Foundation

Agence Nationale de la Recherche

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference35 articles.

1. Théorie des représentations du groupe quantique compact libre $\mathrm{O}(n)$;Banica;C. R. Acad. Sci. Paris Sér. I Math.,1996

2. Compact quantum metric spaces from quantum groups of rapid decay;Bhowmick;J. Noncommut. Geom.,2015

3. Free hypercontractivity;Biane;Comm. Math. Phys.,1997

4. Étude des coefficients de Fourier des fonctions de ${L}^p(G)$;Bonami;Ann. Inst. Fourier (Grenoble),1970

5. Approximation properties for free orthogonal and free unitary quantum groups;Brannan;J. Reine Angew. Math.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A short note on strong convergence of q-Gaussians;International Journal of Mathematics;2023-10-14

2. Strong Haagerup inequalities on non-Kac free orthogonal quantum groups;Journal of Functional Analysis;2022-09

3. Complete Logarithmic Sobolev inequality via Ricci curvature bounded below II;Journal of Topology and Analysis;2021-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3