Deep Lattice Points in Zonotopes, Lonely Runners, and Lonely Rabbits

Author:

Beck Matthias1,Schymura Matthias2

Affiliation:

1. Department of Mathematics , San Francisco State University, San Francisco, CA 94132, USA

2. Institut für Mathematik , Universität Rostock Campus, Ulmenstraße, 69 D-18051, Rostock, Germany

Abstract

Abstract Let $P \subseteq {\mathbb {R}}^{d}$ be a polytope and let $\textbf {w}$ be an interior point of $P$. The coefficient of asymmetry$\operatorname {ca}(P,\textbf {w}):= \min \{ \lambda \geq 1: \textbf {w} - P \subseteq \lambda (P - \textbf {w}) \}$ of $P$ about $\textbf {w}$ has been studied extensively in the realm of Hensley’s conjecture on the maximal volume of a $d$-dimensional lattice polytope that contains a fixed positive number of interior lattice points. We zero in on the coefficient of asymmetry for lattice zonotopes, that is, Minkowski sums of line segments with integer endpoints. Our main result gives the existence of an interior lattice point for which the coefficient of asymmetry is bounded above by an explicit constant in $\Theta (d \log \log d)$, for any lattice zonotope that has an interior lattice point. Our work is both inspired by and feeds on Wills’ lonely runner conjecture from Diophantine approximation: we make intensive use of a discrete version of this conjecture (which, in fact, has been proved), and reciprocally, we reformulate the lonely runner conjecture in terms of the coefficient of asymmetry for certain lattice zonotopes.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3