Factorization of Noncommutative Polynomials and Nullstellensätze for the Free Algebra

Author:

Helton J1,Klep Igor2,Volčič Jurij3

Affiliation:

1. Department of Mathematics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, USA

2. University of Ljubljana, Faculty of Mathematics and Physics, Department of Mathematics, Jadranska 21, 1000 Ljubljana, Slovenia

3. Department of Mathematics, Texas A&M University, TAMU 3368, College Station, TX 77843-3368, USA

Abstract

Abstract This article gives a class of Nullstellensätze for noncommutative polynomials. The singularity set of a noncommutative polynomial $f=f(x_1,\dots ,x_g)$ is $\mathscr{Z}(\,f)=(\mathscr{Z}_n(\,f))_n$, where $\mathscr{Z}_n(\,f)=\{X \in{\operatorname{M}}_{n}({\mathbb{C}})^g \colon \det f(X) = 0\}.$ The 1st main theorem of this article shows that the irreducible factors of $f$ are in a natural bijective correspondence with irreducible components of $\mathscr{Z}_n(\,f)$ for every sufficiently large $n$. With each polynomial $h$ in $x$ and $x^*$ one also associates its real singularity set $\mathscr{Z}^{{\operatorname{re}}}(h)=\{X\colon \det h(X,X^*)=0\}$. A polynomial $f$ that depends on $x$ alone (no $x^*$ variables) will be called analytic. The main Nullstellensatz proved here is as follows: for analytic $f$ but for $h$ dependent on possibly both $x$ and $x^*$, the containment $\mathscr{Z}(\,f) \subseteq \mathscr{Z}^{{\operatorname{re}}} (h)$ is equivalent to each factor of $f$ being “stably associated” to a factor of $h$ or of $h^*$. For perspective, classical Hilbert-type Nullstellensätze typically apply only to analytic polynomials $f,h $, while real Nullstellensätze typically require adjusting the functions by sums of squares of polynomials (sos). Since the above “algebraic certificate” does not involve a sos, it seems justified to think of this as the natural determinantal Hilbert Nullstellensatz. An earlier paper of the authors (Adv. Math. 331 (2018): 589–626) obtained such a theorem for special classes of analytic polynomials $f$ and $h$. This paper requires few hypotheses and hopefully brings this type of Nullstellensatz to near final form. Finally, the paper gives a Nullstellensatz for zeros ${\mathcal{V}}(\,f)=\{X\colon f(X,X^*)=0\}$ of a hermitian polynomial $f$, leading to a strong Positivstellensatz for quadratic free semialgebraic sets by the use of a slack variable.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference47 articles.

1. The implicit function theorem and free algebraic sets;Agler;Trans. Amer. Math. Soc.,2016

2. A generalization of Hilbert’s Nullstellensatz;Amitsur;Proc. Amer. Math. Soc.,1957

3. Factorization theory: from commutative to noncommutative settings;Baeth;J. Algebra,2015

4. Bounded real lemma for structured noncommutative multidimensional linear systems and robust control;Ball;Multidimens. Syst. Signal Process.,2006

5. Valuations and Real Places in the Theory of Formally Real Fields;Becker,1982

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3