Pursuing Quantum Difference Equations II: 3D mirror symmetry

Author:

Kononov Yakov12,Smirnov Andrey34

Affiliation:

1. Department of Mathematics, Columbia University , New York, NY 10027, USA

2. Department of Mathematics, Yale University , New Haven, CT 06511, USA

3. Department of Mathematics, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599, USA

4. Steklov Mathematical Institute of Russian Academy of Sciences , Gubkina str. 8, Moscow, 119991, Russia

Abstract

Abstract Let $\textsf {X}$ and $\textsf {X}^{!}$ be a pair of symplectic varieties dual with respect to 3D mirror symmetry. The $K$-theoretic limit of the elliptic duality interface is an equivariant $K$-theory class $\mathfrak {m} \in K(\textsf {X}\times \textsf {X}^{!})$. We show that this class provides correspondences $$ \begin{align*} & \Phi_{\mathfrak{m}}: K(\textsf{X}) \leftrightarrows K(\textsf{X}^{!}) \end{align*}$$mapping the $K$-theoretic stable envelopes to the $K$-theoretic stable envelopes. This construction allows us to relate various representation theoretic objects of $K(\textsf {X})$, such as action of quantum groups, quantum dynamical Weyl groups, $R$-matrices, etc., to those for $K(\textsf {X}^{!})$. In particular, we relate the wall $R$-matrices of $\textsf {X}$ to the $R$-matrices of the dual variety $\textsf {X}^{!}$. As an example, we apply our results to $\textsf {X}=\textrm {Hilb}^{n}({{\mathbb {C}}}^2)$—the Hilbert scheme of $n$ points in the complex plane. In this case, we arrive at the conjectures of Gorsky and Negut from [10].

Funder

National Science Foundation

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference31 articles.

1. Duality Interfaces in 3-Dimensional Theories;Aganagic

2. Elliptic stable envelopes;Aganagic;J. Amer. Math. Soc.,2021

3. Quantizations of conical symplectic resolutions II: category $\mathcal {O}$ and symplectic duality;Braden,2016

4. Quantizations of conical symplectic resolutions I: local and global structure;Braden;Astérisque,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial Superpotential for Grassmannian $${\text {Gr}}(k,n)$$ from a Limit of Vertex Function;Arnold Mathematical Journal;2024-03-15

2. On the vertex functions of type A quiver varieties;Letters in Mathematical Physics;2024-02-01

3. 3D Mirror Symmetry for Instanton Moduli Spaces;Communications in Mathematical Physics;2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3