Continuity of Singular Kähler–Einstein Potentials

Author:

Guedj Vincent1,Guenancia Henri1,Zeriahi Ahmed1

Affiliation:

1. Institut de Mathematiques de Toulouse; UMR 5219, Universite de Toulouse; CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France

Abstract

Abstract In this note, we investigate some regularity aspects for solutions of degenerate complex Monge–Ampère equations (DCMAE) on singular spaces. First, we study the Dirichlet problem for DCMAE on singular Stein spaces, showing a general continuity result. A consequence of our results is that Kähler–Einstein potentials are continuous at isolated singularities. Next, we establish the global continuity of solutions to DCMAE when the reference class belongs to the real Néron–Severi group. This yields in particular the continuity of Kähler–Einstein potentials on any irreducible Calabi–Yau variety.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference38 articles.

1. Algebraic approximation and the decomposition theorem for Kahler Calabi–Yau varieties;Bakker,2020

2. The Operator (dd$^c$)$^n$ on Complex Spaces;Bedford,1982

3. The Dirichlet problem for a complex Monge–Ampère equation;Bedford;Invent. Math.,1976

4. A new capacity for plurisubharmonic functions;Bedford;Acta Math.,1982

5. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties;Berman;J. Reine Angew. Math.,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Degenerate Monge-Ampère equation on complex varieties in bounded domains of Cn;Journal of Mathematical Analysis and Applications;2025-02

2. Strict positivity of Kähler–Einstein currents;Forum of Mathematics, Sigma;2024

3. Higher regularity for singular Kähler–Einstein metrics;Duke Mathematical Journal;2023-12-01

4. On the collapsing of Calabi–Yau manifolds and Kähler–Ricci flows;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-06-01

5. Kähler–Einstein metrics near an isolated log-canonical singularity;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3