Double Jump Phase Transition in a Soliton Cellular Automaton

Author:

Levine Lionel1,Lyu Hanbaek2,Pike John3

Affiliation:

1. Department of Mathematics, Cornell University, Ithaca, NY 14853, United States

2. Department of Mathematics, University of California, Los Angeles, CA 90095, United States

3. Department of Mathematics, Bridgewater State University, Bridgewater, MA 02324, United States

Abstract

Abstract In this paper, we consider the soliton cellular automaton introduced in [ 26] with a random initial configuration. We give multiple constructions of a Young diagram describing various statistics of the system in terms of familiar objects like birth-and-death chains and Galton–Watson forests. Using these ideas, we establish limit theorems showing that if the 1st $n$ boxes are occupied independently with probability $p\in (0,1)$, then the number of solitons is of order $n$ for all $p$ and the length of the longest soliton is of order $\log n$ for $p<1/2$, order $\sqrt{n}$ for $p=1/2$, and order $n$ for $p>1/2$. Additionally, we uncover a condensation phenomenon in the supercritical regime: for each fixed $j\geq 1$, the top $j$ soliton lengths have the same order as the longest for $p\leq 1/2$, whereas all but the longest have order $\log n$ for $p>1/2$. As an application, we obtain scaling limits for the lengths of the $k^{\textrm{th}}$ longest increasing and decreasing subsequences in a random stack-sortable permutation of length $n$ in terms of random walks and Brownian excursions.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference27 articles.

1. The continuum random tree III;Aldous;Ann. Probab.,1993

2. Duxbury Advanced Series in Statistics and Decision Sciences;Casella,2002

3. Probability and its Applications (New York);Chen,2011

4. Dynamics of the box-ball system with random initial conditions via Pitman’s transformation;Croydon,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of the Box-Ball System with Random Initial Conditions via Pitman’s Transformation;Memoirs of the American Mathematical Society;2023-03

2. Bi-infinite Solutions for KdV- and Toda-Type Discrete Integrable Systems Based on Path Encodings;Mathematical Physics, Analysis and Geometry;2022-10-22

3. Generalized hydrodynamics in box-ball system;Journal of Physics A: Mathematical and Theoretical;2020-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3