The Dirac–Higgs Complex and Categorification of (BBB)-Branes

Author:

Franco Emilio1,Hanson Robert2

Affiliation:

1. Departamento de Matemáticas , Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco 28049, Madrid, España

2. Centro de Análise Matemática , Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais s/n, 1049-001 Lisboa, Portugal

Abstract

Abstract Let ${\mathcal{M}}_{\operatorname{Dol}}(X,G)$ denote the hyperkähler moduli space of $G$-Higgs bundles over a smooth projective curve $X$. In the context of four dimensional supersymmetric Yang–Mills theory, Kapustin and Witten introduced the notion of (BBB)-brane: boundary conditions that are compatible with the B-model twist in every complex structure of ${\mathcal{M}}_{\operatorname{Dol}}(X,G)$. The geometry of such branes was initially proposed to be hyperkähler submanifolds that support a hyperholomorphic bundle. Gaiotto has suggested a more general type of (BBB)-brane defined by perfect analytic complexes on the Deligne–Hitchin twistor space $\operatorname{Tw}({\mathcal{M}}_{\operatorname{Dol}}(X,G))$. Following Gaiotto’s suggestion, this paper proposes a framework for the categorification of (BBB)-branes, both on the moduli spaces and on the corresponding derived moduli stacks. We do so by introducing the Deligne stack, a derived analytic stack with corresponding moduli space $\operatorname{Tw}({\mathcal{M}}_{\operatorname{Dol}}(X,G))$, defined as a gluing between two analytic Hodge stacks along the Riemann–Hilbert correspondence. We then construct a class of (BBB)-branes using integral functors that arise from higher non-abelian Hodge theory, before discussing their relation to the Wilson functors from the Dolbeault geometric Langlands correspondence.

Funder

Spanish Ministry of Science and Innovation

La Caixa INPhINIT programme

Publisher

Oxford University Press (OUP)

Reference65 articles.

1. Good moduli spaces for Artin stacks;Alper;Ann. Inst. Fourier,2013

2. Self-duality in four-dimensional Riemannian geometry;Atiyah;Proc. Roy. Soc. Lond.,1978

3. Singular support of coherent sheaves and the geometric Langlands conjecture;Arinkin;Selecta Math.,2015

4. Proof of the geometric Langlands conjecture;Arinkin

5. Higgs bundles and (A,B,A)-branes;Baraglia;Comm. Math. Phys.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3