Log-Canonical Coordinates for Symplectic Groupoid and Cluster Algebras

Author:

Chekhov Leonid O123,Shapiro Michael23

Affiliation:

1. Steklov Mathematical Institute , Moscow 119991, Russia

2. National Research University Higher School of Economics , Moscow 119048, Russia

3. Michigan State University , East Lansing, MI 48824, USA

Abstract

Abstract Using Fock–Goncharov higher Teichmüller space variables we derive log-canonical coordinate representation for entries of general symplectic leaves of the $\mathcal A_n$ groupoid of upper-triangular matrices and, in a more general setting, of higher-dimensional symplectic leaves for algebras governed by the reflection equation with the trigonometric $R$-matrix. The obtained results are in a perfect agreement with the previously obtained Poisson and quantum representations of groupoid variables for $\mathcal A_3$ and $\mathcal A_4$ in terms of geodesic functions for Riemann surfaces with holes. We realize braid-group transformations for $\mathcal A_n$ via sequences of cluster mutations in the special $\mathcal A_n$-quiver. We prove the groupoid relations for normalized quantum transport matrices and, as a byproduct, obtain the Goldman bracket in the semiclassical limit. We prove the quantum algebraic relations of transport matrices for arbitrary (cyclic or acyclic) directed planar network.Dedicated to the memory of a great mathematician and person, Boris Dubrovin.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference44 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster realisations of ıquantum$\imath {\rm quantum}$ groups of type AI;Proceedings of the London Mathematical Society;2024-09-12

2. Points of quantum SLn coming from quantum snakes;Algebraic & Geometric Topology;2024-08-19

3. Quantum traces for SLn(C): The case n = 3;Journal of Pure and Applied Algebra;2024-07

4. Generalized double affine Hecke algebras, their representations, and higher Teichmüller theory;Advances in Mathematics;2024-07

5. Cluster variables for affine Lie–Poisson systems;Theoretical and Mathematical Physics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3