Affiliation:
1. Université de Rennes , CNRS, IRMAR-UMR 6625, F-35000 Rennes, France
2. Instituto de Matemática Pura e Aplicada , Estrada Dona Castorina, 110 Horto, Rio de Janeiro, Brasil
Abstract
Abstract
Given a holomorphic singular foliation ${\mathcal {F}}$ of $({\mathbb {C}}^n,0)$, we define $\textrm {Iso}({\mathcal {F}})$ as the group of germs of biholomorphisms on $({\mathbb {C}}^n,0)$ preserving ${\mathcal {F}}$: $\textrm {Iso}({\mathcal {F}})\!=\!\lbrace \Phi \in \textrm {Diff}({\mathbb {C}}^n,0)\,|\,\Phi ^*({\mathcal {F}})\!=\!{\mathcal {F}}\rbrace $. The normal subgroup of $\textrm {Iso}({\mathcal {F}})$, of biholomorphisms sending each leaf of ${\mathcal {F}}$ into itself, will be denoted as $\textrm {Fix}({\mathcal {F}})$. The corresponding groups of formal biholomorphisms will be denoted as $\widehat {\textrm {Iso}}({\mathcal {F}})$ and $\widehat {\textrm {Fix}}({\mathcal {F}})$, respectively. The purpose of this paper will be to study the quotients $\textrm {Iso}({\mathcal {F}})/\textrm {Fix}({\mathcal {F}})$ and $\widehat {\textrm {Iso}}({\mathcal {F}})/\widehat {\textrm {Fix}}({\mathcal {F}})$, mainly in the case of codimension one foliation.
Publisher
Oxford University Press (OUP)
Reference29 articles.
1. Entire functions in the classification of differentiable germs tangent to the identity in one and two variables;Ahern;Trans. Amer. Math. Soc.,1995
2. Transformations isotropes des germes de feuilletages holomorphes;Berthier;J. Math. Pures Appl.,1999
3. Formes intégrables holomorphes singulières;Cerveau;Astérisque,1982
4. Logarithmic foliations;Cerveau;Annales dela Faculté des Sciences de Toulouse