Growth of Unbounded Subsets in Nilpotent Groups, Random Mapping Statistics and Geometry of Group Laws

Author:

Greenfeld Be’eri1,Lavner Hagai2

Affiliation:

1. Department of Mathematics, University of California–San Diego , La Jolla, CA 92093, USA

2. Einstein Institute of Mathematics, The Hebrew University of Jerusalem , 9190401 Jerusalem, Israel

Abstract

Abstract For a group $G$ let $\gamma ^{\max }_G(n)$ denote the maximum number of length-$n$ words over an arbitrary $n$-letter subset of $G$. If $G$ is finitely generated and residually finite, then either $\gamma ^{\max }_G(n)$ is exponentially bounded, if and only if $G$ is virtually abelian, or $\gamma ^{\max }_G(n)\geq ~\left (e^{-\frac {1}{4}}+o(1)\right )n^n$; the latter bound cannot be improved, namely, it is attained for the Heisenberg group. For higher-step free nilpotent groups we have $(1-o(1))n^n\leq \gamma ^{\max }_G(n)\lneq n^n$. As a key ingredient in the proof, we calculate the number of pair histograms of functions $f\colon [n]\rightarrow [n]$ and the probability that a random function $f\colon [n]\rightarrow [n]$ can be uniquely determined by its pair histogram. We analyze group laws of the Heisenberg group by means of closed paths attached to words in the free group and their projected oriented polygons.

Funder

ISF

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Ordering the space of finitely generated groups;Bartholdi;Ann. Inst. Fourier (Grenoble), Grenoble,2015

2. Lectures on Nilpotent Groups;Baumslag,1971

3. On varieties generated by a finitely generated group;Baumslag;Math. Z.,1964

4. Uniformly amenable discrete groups;BoŻejko;Math. Ann.,1980

5. Groups satisfying semigroup laws, and nilpotent-by-Burnside varieties;Burns;J. Algebra,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3