Azumaya Algebras and Canonical Components

Author:

Chinburg Ted1,Reid Alan W2,Stover Matthew3

Affiliation:

1. Department of Mathematics, The University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6395, USA

2. Department of Mathematics, Rice University, 6100 Main St, Houston, TX 77005, USA

3. Department of Mathematics, Temple University, 1805 North Broad Street, Philadelphia, PA 19122, USA

Abstract

Abstract Let $M$ be a compact 3-manifold and $\Gamma =\pi _1(M)$. Work by Thurston and Culler–Shalen established the ${\operatorname{\textrm{SL}}}_2({\mathbb{C}})$ character variety $X(\Gamma )$ as fundamental tool in the study of the geometry and topology of $M$. This is particularly the case when $M$ is the exterior of a hyperbolic knot $K$ in $S^3$. The main goals of this paper are to bring to bear tools from algebraic and arithmetic geometry to understand algebraic and number theoretic properties of the so-called canonical component of $X(\Gamma )$, as well as distinguished points on the canonical component, when $\Gamma $ is a knot group. In particular, we study how the theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic information about Dehn surgeries, and perhaps of most interest, to construct new knot invariants that lie in the Brauer groups of curves over number fields.

Funder

NSF FRG

NSF SaTC

Simons Foundation

National Science Foundation

Simons Foundation/SFARI

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference57 articles.

1. Mathematical Notes;Akbulut,1990

2. Montesinos knots, Hopf plumbings, and L-space surgeries;Baker;J. Math. Soc. Japan,2018

3. The Magma algebra system. I. The user language;Bosma,1997

4. Éléments de Mathématique;Bourbaki,2012

5. Orderable 3-manifold groups;Boyer;Ann. Inst. Fourier, Grenoble,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ribbon concordance of knots is a partial ordering;Communications of the American Mathematical Society;2022-12-12

2. Profinite Rigidity, Kleinian Groups, and the Cofinite Hopf Property;Michigan Mathematical Journal;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3