The Limit Point of the Pentagram Map and Infinitesimal Monodromy

Author:

Aboud Quinton1,Izosimov Anton1

Affiliation:

1. Department of Mathematics, University of Arizona, 85721, USA

Abstract

Abstract The pentagram map takes a planar polygon $P$ to a polygon $P^{\prime }$ whose vertices are the intersection points of the consecutive shortest diagonals of $P$. The orbit of a convex polygon under this map is a sequence of polygons that converges exponentially to a point. Furthermore, as recently proved by Glick, coordinates of that limit point can be computed as an eigenvector of a certain operator associated with the polygon. In the present paper, we show that Glick’s operator can be interpreted as the infinitesimal monodromy of the polygon. Namely, there exists a certain natural infinitesimal perturbation of a polygon, which is again a polygon but in general not closed; what Glick’s operator measures is the extent to which this perturbed polygon does not close up.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference12 articles.

1. Cross-ratio dynamics on ideal polygons;Arnold,2018

2. Loop Groups, Clusters, Dimers and Integrable Systems;Fock,2016

3. Integrable cluster dynamics of directed networks and pentagram maps;Gekhtman;Adv. Math.,2016

4. The pentagram map and Y-patterns;Glick;Adv. Math.,2011

5. The limit point of the pentagram map;Glick;Int. Math. Res. Not. IMRN,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3