Combinatorial Invariance Conjecture for $\widetilde {A}_2$

Author:

Burrull Gaston1,Libedinsky Nicolas2,Plaza David3

Affiliation:

1. Faculty of Science, The University of Sydney, Carslaw Building, Eastern Ave., Camperdown Sydney, New South Wales 2006, Australia

2. Universidad de Chile, Mathematics Las Palmeras, 3425 Casilla, 653 Santiago, Ñuñoa, 7800003, Chile

3. Universidad de Talca, Instituto de Matemáticas, Avenida Lircay s/n Talca, 3460000, Chile

Abstract

Abstract The combinatorial invariance conjecture (due independently to Lusztig and Dyer) predicts that if $[x,y]$ and $[x^{\prime},y^{\prime}]$ are isomorphic Bruhat posets (of possibly different Coxeter systems), then the corresponding Kazhdan–Lusztig polynomials are equal, that is, $P_{x,y}(q)=P_{x^{\prime},y^{\prime}}(q)$. We prove this conjecture for the affine Weyl group of type $\widetilde {A}_2$. This is the first infinite group with non-trivial Kazhdan–Lusztig polynomials where the conjecture is proved.

Funder

National Agency for Research and Development

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference25 articles.

1. Kazhdan–Lusztig polynomials for $\widetilde {B}_2$;Batistelli,2021

2. From moment graphs to intersection cohomology;MacPherson;Math. Ann.,2001

3. A combinatorial formula for Kazhdan–Lusztig polynomials;Brenti;Invent. Math.,1994

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some open problems on Coxeter groups and unimodality;Proceedings of Symposia in Pure Mathematics;2024

2. Towards combinatorial invariance for Kazhdan-Lusztig polynomials;Representation Theory of the American Mathematical Society;2022-11-16

3. IntroSurvey of Representation Theory;Journal of the Indian Institute of Science;2022-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3