On the Composition of Two Spherical Twists

Author:

Barbacovi Federico1

Affiliation:

1. Department of Mathematics, University College London , 25 Gordon Street, London, WC1H 0AY, UK

Abstract

Abstract Segal [17] proved that any autoequivalence of an enhanced triangulated category can be realised as a spherical twist. However, when exhibiting an autoequivalence as a spherical twist one has various choices for the source category of the spherical functor. We describe a construction that realises the composition of two spherical twists as the twist around a single spherical functor whose source category semi-orthogonally decomposes into the source categories for the spherical functors we started with. We give a description of the cotwist for this spherical functor and prove, in the special case when our starting twists are around spherical objects, that the cotwist is the Serre functor (up to a shift). We finish with an explicit treatment for the case of $\mathbb {P}$-objects.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference22 articles.

1. New derived symmetries of some hyperkähler varieties;Addington;Algebraic Geom.,2016

2. Spherical DG-functors;Anno;J. Eur. Math. Soc. (JEMS),2017

3. functors;Anno,2019

4. Bar category of modules and homotopy adjunction for tensor functors;Anno;Int. Math. Res. Not. IMRN,2021

5. Spherical functors and the flop-flop autoequivalence;Barbacovi,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unbounded twisted complexes;Journal of Algebra;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3