Three-Dimensional Mirror Symmetry and Elliptic Stable Envelopes

Author:

Rimányi Richárd1,Smirnov Andrey12,Zhou Zijun3,Varchenko Alexander145

Affiliation:

1. Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

2. Steklov Mathematical Institute of Russian Academy of Sciences Gubkina str. 8, Moscow, 119991, Russia

3. Department of Mathematics, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA

4. Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow GSP-1, Russia

5. Moscow Center of Fundamental and Applied Mathematics, Leninskiye Gory 1, 119991 Moscow GSP-1, Russia

Abstract

Abstract We consider a pair of quiver varieties $(X;X^{\prime})$ related by 3D mirror symmetry, where $X =T^*{Gr}(k,n)$ is the cotangent bundle of the Grassmannian of $k$-planes of $n$-dimensional space. We give formulas for the elliptic stable envelopes on both sides. We show an existence of an equivariant elliptic cohomology class on $X \times X^{\prime} $ (the mother function) whose restrictions to $X$ and $X^{\prime} $ are the elliptic stable envelopes of those varieties. This implies that the restriction matrices of the elliptic stable envelopes for $X$ and $X^{\prime}$ are equal after transposition and identification of the equivariant parameters on one side with the Kähler parameters on the dual side.

Funder

Simons Foundation

RFBR

AMS

NSF

FRG

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference65 articles.

1. Elliptic stable envelope;Aganagic,2016

2. Quasimap counts and Bethe eigenfunctions;Aganagic;Mosc. Math. J.,2017

3. Gale duality and koszul duality;Braden;Adv. Math.,2010

4. Quantizations of conical symplectic resolutions II: category $\mathcal{O}$ and symplectic duality;Braden;Astérisque,2016

5. Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, II;Braverman,2016

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3