On Dynamical Cancellation

Author:

Bell Jason P1,Matsuzawa Yohsuke2,Satriano Matthew1

Affiliation:

1. Department of Pure Mathematics, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada

2. Department of Mathematics, Rikkyo University , 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan

Abstract

Abstract Let $X$ be a projective variety and let $f$ be a dominant endomorphism of $X$, both of which are defined over a number field $K$. We consider a question of the 2nd author, Meng, Shibata, and Zhang, who asks whether the tower of $K$-points $Y(K)\subseteq (f^{-1}(Y))(K)\subseteq (f^{-2}(Y))(K)\subseteq \cdots $ eventually stabilizes, where $Y\subset X$ is a subvariety invariant under $f$. We show this question has an affirmative answer when the map $f$ is étale. We also look at a related problem of showing that there is some integer $s_0$, depending only on $X$ and $K$, such that whenever $x, y \in X(K)$ have the property that $f^{s}(x) = f^{s}(y)$ for some $s \geqslant 0$, we necessarily have $f^{s_{0}}(x) = f^{s_{0}}(y)$. We prove this holds for étale morphisms of projective varieties, as well as self-morphisms of smooth projective curves. We also prove a more general cancellation theorem for polynomial maps on ${\mathbb {P}}^1$ where we allow for composition by multiple different maps $f_1,\dots ,f_r$.

Funder

National Science and Engineering Board of Canada

JSPS Overseas Research Fellowship

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference27 articles.

1. The equation $f(X)=f(Y)$ in rational functions $X=X(t),Y=Y(t)$;Avanzi;Compositio Math.,2003

2. The Diophantine equation $f(x)=g(y)$;Bilu;Acta Arithmetica,2000

3. Canonical heights on varieties with morphisms;Call;Compositio Math.,1993

4. Grad. Texts in Math., 150;Eisenbud,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical cancellation of polynomials;Bulletin of the London Mathematical Society;2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3