Bykovskii-Type Theorem for the Picard Manifold

Author:

Balog Antal1,Biró András1,Cherubini Giacomo1,Laaksonen Niko1

Affiliation:

1. Alfréd Rényi Institute of Mathematics, POB 127, Budapest H-1364, Hungary; Rényi Intézet Lendület Automorphic Research Group

Abstract

Abstract We generalise a result of Bykovskii to the Gaussian integers and prove an asymptotic formula for the prime geodesic theorem in short intervals on the Picard manifold. Previous works show that individually the remainder is bounded by $O(X^{13/8+\epsilon })$ and $O(X^{3/2+\theta +\epsilon })$, where $\theta$ is the subconvexity exponent for quadratic Dirichlet $L$-functions over $\mathbb{Q}(i)$. By combining arithmetic methods with estimates for a spectral exponential sum and a smooth explicit formula, we obtain an improvement for both of these exponents. Moreover, by assuming two standard conjectures on $L$-functions, we show that it is possible to reduce the exponent below the barrier $3/2$ and get $O(X^{34/23+\epsilon })$ conditionally. We also demonstrate a dependence of the remainder in the short interval estimate on the classical Gauss circle problem for shifted centres.

Funder

Rényi Intézet Lendület Automorphic Research Group

Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. Prime geodesic theorem in the 3-dimensional hyperbolic space;Balkanova;Trans. Amer. Math. Soc.,2019

2. Bounds for a spectral exponential sum;Balkanova;J. Lond. Math. Soc. (2),2019

3. Sums of Kloosterman sums in the prime geodesic theorem;Balkanova,2019

4. Prime geodesic theorem for the Picard manifold;Balkanova,2018

5. Mean square of zeta function, circle problem and divisor problem revisited;Bourgain,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Prime Geodesic Theorem in Arithmetic Progressions;International Mathematics Research Notices;2024-09-12

2. Spectral decomposition formula and moments of symmetric square $L$-functions;Izvestiya: Mathematics;2023

3. Spectral decomposition formula and moments of symmetric square $L$-functions;Известия Российской академии наук. Серия математическая;2023

4. The prime geodesic theorem for PSL2(ℤ[i]) and spectral exponential sums;Algebra & Number Theory;2022-11-29

5. Ambient Prime Geodesic Theorems on Hyperbolic 3-Manifolds;International Mathematics Research Notices;2021-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3